Silica sulfuric acid: a reusable solid catalyst for one pot synthesis of densely substituted pyrrole-fused isocoumarins under solvent-free conditions

نویسندگان

  • Sudipta Pathak
  • Kamalesh Debnath
  • Animesh Pramanik
چکیده

A convenient and efficient methodology for the synthesis of densely substituted pyrrole-fused isocoumarins, which employs solid-supported silica sulfuric acid (SSA) as catalyst, has been developed. When the mixture of ninhydrin adducts of acetylacetone/ethyl acetoacetate and primary amines was heated on the solid surface of SSA under solvent-free conditions, the pyrrole-fused isocoumarins were formed in good yields. This synthetic method has several advantages such as the employment of solvent-free reaction conditions without the use of any toxic reagents and metal catalysts, the ease of product isolation, the use of a recyclable catalyst, the low cost, the easy availability of the starting materials, and the excellent yields of products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silica Boron Sulfonic Acid as Heterogeneous and Highly Efficient Solid Acid Catalyst For the Preparation of Hantzsch 1,4-dihydropyridines Under Solvent-Free

Silica boron sulfonic acid [SiO2–B(OSO3H)3] as an inexpensive, reusable, and Lewis and Brønsted acid catalyst was successfully synthesized, and used for the one-pot three-components synthesis of biologically active substituted Hantzsch 1,4-dihydropyridine derivatives  in the absence of solvent at 90ºC. Silica boron sulfonic acid is attractive and efficient, because it plays in two role as a Lew...

متن کامل

Nano silica sulfuric acid catalyzed synthesis of 2-substituted aryl (indolyl) kojic acid derivatives

Nano silica sulfuric acid as a solid acid, was described to be an effective catalyst for one-pot three-component reaction of kojic acid, aryl aldehydes and indoles for the preparation of 2-substituted aryl (indolyl) kojic acid derivatives. The catalyst was prepared by combination of chlorosulfonic acid to nano silica gel. The size of nanoparticles were observed with SEM.All prepared compounds w...

متن کامل

Nano silica sulfuric acid catalyzed synthesis of 2-substituted aryl (indolyl) kojic acid derivatives

Nano silica sulfuric acid as a solid acid, was described to be an effective catalyst for one-pot three-component reaction of kojic acid, aryl aldehydes and indoles for the preparation of 2-substituted aryl (indolyl) kojic acid derivatives. The catalyst was prepared by combination of chlorosulfonic acid to nano silica gel. The size of nanoparticles were observed with SEM.All prepared compounds w...

متن کامل

Synthesis of Benzopyrano[2,3-d]pyrimidines Using Silica-Bonded N-Propyldiethylenetriamine Sulfamic Acid (SPDTSA) As Heterogeneous Solid Acid Catalyst under Solvent-Free Conditions

Silica-bonded N-propyldiethylenetriamine sulfamic acid (SPDTSA) is employed as a recyclable heterogeneous solid acid catalyst for the synthesis of benzopyrano[2,3-d]pyrimidines  through one-pot condensation reaction of salicylaldehydes, malononitrile and secondary amines  at room temperature under solvent-free conditions. SPDTSA showed much the same efficiency when used in con...

متن کامل

SiO2-BaCl2 as a Highly Efficient and Reusable Heterogeneous Catalyst for the One-pot Synthesis of 3,4-dihydropyrimidin-2-(1H)- one/thione Derivatives Under Solvent-free Conditions

An efficient protocol for the synthesis of 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives via multi-component coupling reaction of aromatic aldehydes, β-ketoester and urea or thiourea under solvent-free conditions using Silica Supported Barium Chloride as a catalyst is described. All prepared compounds with melting points, IR,1H NMR and 13C NMR were identified. High yields, mild conditi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013